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We study minimal conditions under which the function system of dyadic
translates and dilates of one fixed function cp(t) with support in [0, I] forms a
representation system in Lp(O, I), i.e., that any function f(t) E Lp(O, I) can be
represented by at least one Lp-convergent series with respect to this system.
Generalizations to the situation of a multiresolution analysis on R" are also
discussed. ':C:' 1995 Academic Press, Inc.

1, INTRODUCTION

Let be given a function rp(t) with support In [0, 1], and consider the
system

i=O, ..., 2k -1; k=O, 1,2, ....

Weare going to study minimal conditions under which this system (or a
subsystem of it) is a representation system in Lp(O, 1) for some °<p < 00,
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16 FILIPPOV AND OSWALD

I.e., whether for any f E LI'(O, I) there exists at least one LI'-convergent
series representation:

00 Zk - 1

f(t)= I L ak,icpk,i(t)·
k ~O i~O

The notion of representation systems, which generalizes the notion
of a basis, was introduced by A, A. Talaljan [Tl] but arised already in
connection with the classical investigations by D, E. Menshov [Me] on the
representation of arbitrary measurable functions by trigonometric series,
There is a number of results, both on representation systems in spaces
without bases (such as LI" 0 <p < 1), and on cases where some classical
system does not form a basis in a particular space, For instance, A. A,
Talaljan [Tl, T2] showed that any complete orthonormal system in
Lz(O, 1) forms a representation system in L/O, 1), °<p < 1. Moreover, this
property remains true even if a finite number of functions are deleted from
the orthonormal system, As a consequence, if we take

{
-I

cP(t) = I, ,
t E (L 1]

t E (0, D'

then {CPk. i} is a representation system in LI'(O, 1), 0 <p < 1 (to this end,
consider the Haar system and delete the first (constant) function), Clearly,
for p ~ I this is not true, a constant #0 can not be represented. Another
result we want to mention is as follows (P. L. Uljanov [U]): The system
{CPk. i} with the generating function

{
1-2t

cp(t)= 2t, ,
~<t::;:l

O::;:t::;:~

(which is actually the classical Faber-Schauder-System with the first two
functions deleted) forms a representation system in LI'(O, I), 0 <p < 00.

There are investigations on subsystems of representation systems [I, FI,
F2], on representation systems in ¢J(L) [U, I, 01, 02, FI, F2], on the
representation of complex functions by series of exponentials [K] etc.

In Section 2 we prove the following result which generalizes the above
examples in a rigorous way.

THEOREM 1. (a) Let cP E LiO, I) for some 1::;: q < 00. If

1f cp(t)dt#O,
o

then {CPk,;} is a representation system in LI'(O, I) for any °<p::;: q.
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(b) Let 0 # qJ E L 2(0, 1). Then {qJ k,;} is a representation system in
LI'(O, I), O<p< I.

Obviously, this result completely solves the question of {CPk, i} being a
representation system in L,,( 0, I) for I ~ p < 00: qJ(t) E LI'{O, I) and (*) are
necessary and sufficient conditions in this case, For p < I, a final answer is
still missing,

The method we use is elementary. The crucial Lemma I of Section 2
shows the existence of a constant Ao # 0 such that

rII - AoqJ(tW dt < I.
o

From this simple fact, we can construct L,,-convergent series with respect to
{qJk, i} for any f E L,,(O, I). The construction shows that the systems under
consideration never form bases: one can find many representations for any
given function as well as delete functions from {qJk,;} without destroying the
representation property. We also give a necessary and sufficient condition on a
subsystem of {qJk,i} to remain still a representation system in LI"

The interest in systems of the above type which are generated by trans­
lation and dilation from one function cp{ t) stems also from the recent
research activities on multiresolution analysis and wavelets where questions
of approximation and representation by analogous systems on R" have
been studied to a certain generality, cf [0, BDR, 1M]. We address this
case of representation systems {qJk,;} in L,,{R") in Section 3, allowing also
some generating functions qJ with noncompact support.

2. REPRESENTATION SYSTEMS IN L,,[O, I]

Let cp( t): [0, I] -> R be an arbitrary measurable function which is
extended outside [0, I] by zero. We define the system {qJ u} of dyadic
translates and dilates of qJ on [0, I] by

tE[O,I]; k=O,I, ... ; i=0, ... ,2k -1.

Denote (as in the classical case of the Haar system)

n = 2k + i, k = 0, I, ... , i = 0, ... , 2k
- I.

Let I" =. Iu = (;/2\ ; + 1/2k
) stand for the dyadic interval related to qJll'

Concerning the L,,-spaces (0 <p < 00) we introduce the following notation:

fi = max(l,p),
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denotes the usual norm of a function f E Lp == Lp(O, 1) if 1~p < 00, and
generates the Lp-metric if 0 <p < 1. Obviously, accepting this we can use
the triangle inequality

for all 0 <p < 00. The same notation carries over to Lp>spaces on general
domains in Rn.

DEFINITION [Tl, T2]. A system of {fn}:'= \ C L p , 0 <p < 00 is called a
representation system in the space L p if for any f E L p there exists a series
L:f= \ ckfk such that

This definition generalizes to F -spaces.

THEOREM 2. (a) Let qJ satisfy the assumptions of Theorem l(a). Then
a subsystem {qJn,} of the system {qJn} is a representation system in Lp ,

o<p ~ q, if and only if

(1)

(b) If qJ satisfies the assumptions of Theorem l(b) then a subsystem
{qJn/ t)} is a representation system in L p , 0 < p < 1, if and only if (l) is
fulfilled.

We first prove the following lemma.

LEMMA 1. Under the assumptions of Theorem l(a) resp. (b) there exists
a constant 20 t= 0 such that

(2)

Proof We start with case (a) of Theorem 1. Let qJ E L q , q ~ 1, satisfy
gqJ(t)dt=o>O (ifo<O then consider -qJ(t».

Obviously, it is sufficient to prove the estimate for p = q since by the
Holder inequality II gil L

p
~ II gil r;,;n(p. \) for all g E L q and p < q. For p ~ 1 we

have the inequalities

'l-xIP~ I-px+cox2
,

!1-xJP~ 1 +c\ Ixl +C2!X!P,

Ixl ~~,

XER.
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which hold with some positive constants Co, C\, C2' Let

19

E...* = {t: IqJ(t)1 > 2~}' oc>O.

We use the first inequality on Eo:, the second one on E:. For 0 < A~ oc we
obtain

III-AqJllf = f II-A,qJ(tWdt+ f Il-AqJ(tWdt
p £7. E~·

Since mes E: --+ 0 for oc --+ 0 + and qJ E L p , P = q ~ 1, one can now fix
OCo > 0 such that T'(O +) < 0 which together with T(O) = 1 implies the
existence of 0 < Ao < 1/2oco with the desired properties. This proves the
assertion in the case (a) of Theorem 1.

We come now to the assumptions (b) of Theorem 1. Let 0 <p < 1. By
the Taylor formula there exists a constant C > 0 such that

Ixl ~~.
Let

G(A)=rIl-AqJ(tWdt, AER,
o

and

E! = {t: IAqJ(t)l > !} = E~)..

Then, using the above inequality on E). and the triangle inequality on E!,
we obtain

G()d = t, + t)' ~ 1 - AP L, qJ(t) dt - c L, IAqJ(tW dt +L: 1),qJ(tW dt.

For tEE;* we have \).cp(tW~22-p \},cp(tW. Thus, we get

G(A)+G(-)')~1_A,2[cf IqJ(tWdt-2 2- p J IqJ(tWdt].
2 E, E)'
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It can easily be seen that for A-> 0

and that

t. !qJ(tW dt -> O.
,

Hence there exists a Ao> 0 such that (G(},o) + G( - Ao))/2 < 1 which gives
the result for case (b).

The following discussion shows that the inequality (2) is all what we
need to prove the assertions of Theorems 1 and 2. For brevity, denote
g,(x) = AOqJnJ:t) where Ao is taken from Lemma 1, and {qJnJ ~ I is any sub­
system of the system {qJ,,}. A function S will be called dyadic step function
if, for some kEN, S is constant on all intervals Tk . j, i.e., if

Zk -I

S(t)= L Ak,iXlk,,(t)
;=0

where X,( t) denotes the characteristic function of an interval I, and the }'k. ;

are any real numbers.

LEMMA 2. Assume that qJ E Lp(O, I) satisfies (2), and that the sub­
system {qJnJ satisfies (I). Fix some aE(ao, 1). Then for any step function
S, and arbitrar.v NEN there exists a finite sum h==2:.;~Nc,g" M>N,
such that

IIS-hIILf~aIISIILp

II f C,g'll
r

«I +a) IISIILp'
II'~N L p

N~n~M.

(3)

(4)

Proof Consider a dyadic step function S 1= 0 as given above (with a
integer k fixed). According to (l) and the obvious properties of dyadic
intervals, we can find a subsequence of indices max(N, 2k

) ~ I) <
12 < ... < Ij < ... such that the intervals Ej == In; are pairwise disjoint, and
that still mes Uj Ej = I. By construction, each 'Ej belongs to exactly one
Ik. j, and we set Aj = }'k. i'

We can now check that

m

h = L Ajg~
j=1
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has the desired properties for sufficiently large m (to fit the notation used
in the above formulation of Lemma 2, set c, = Aj if 1= Ij , and c,= 0
otherwise). Let Em = [0, I )\U7= 1 Ej . Obviously, by this construction and
by (2), we get

~f jS(tWdt+ag IISII{,
Em p

where .1 0 and 0'0 are given in Lemma 1. Since mes Em -+ 0 for m -+ 00, the
remaining integral over Em will be arbitrarily small. This establishes (3) if
we fix some sufficiently large m (= M). Since the intervals Ej are disjoint
and supp g~c Ej , we have

for all n ~ m which finishes the proof of Lemma 2.

Proof of Theorem 2. We use an induction argument. Let fo = f,
No = M 0 = O. In the induction step, for given f, _1 and M, _ l' we first define
some dyadic step function S, such that

After this, by Lemma 2 applied to this S, and some N, > M'_l we find a
linear combination

M,

h,= L c,g,
1= /'Ii,

such that

/IS, - h, /1 L p ~ a liS, II L p '

ttN' C, g,t
p
~ (l + a) II S, II Lp '

for some fixed 0'0 < 0'< 1. Finally, to finish the induction step, we set
.f..=f'-l-h,.

To prove the theorem, we will check that the series

x ,x

L h,= L c,g,= L )'oc,qJn/
,~l J= 1 J~ 1
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represents fin L p (we put c,=O for the remaining indices I). To this end,
for arbitrarily given n > 0, define the index r?: I such that M r_ I ~ n < Mr'
Then, by the above construction,

~ IIfr - I II Lp + (l + a) II Sr II Lp

~ (2 +a) IIfr _I II Lp + (1 + a) 1If, _I - Sr II Lp

~ 2-' + 3 IIfr-IIILp'

Note that for n < N, the second term may be neglected. Since

IlfrllLp ';;; IIfr-,- SrIILp + II Sr- h,IILp

~2-r-1 +a IISrIILp,;;;2-r +a Ilf,-,IIL
p

'

we get recursively

IlfrIIL
p
';;;2- r+2-'+la+ ... +2- 1a,-1 +ar IIfilL

p

~ r(max(2 - \ a)' + a r IIfll L ,
p

which finally shows the convergence of the series to f. The proof of the
sufficiency of ( I) for the assertion of Theorem 2 is now complete.

The necessity is obvious: if (I) is violated then there exists a set
E c [0, I] of positive measure such that all ({J 11/ but a finite number vanish
on E. Therefore, it is easy to construct a function f E Lp[ 0, I] with support
in E which is not in the Lp closure of the given subsystem.

Remark 1. Since the whole system {({J1I} obviously satisfies (l),
Theorem I is a consequence of Theorem 2.

Remark 2. It can be shown that condition (I) of Theorem 2 can be
replaced by a condition formulated directly in terms of the functions ({J1I[:

Remark 3. One easily observes from the proofs that Theorem 1 carries
over to the spaces Lp([O, 1]"), P > 0, or even to Lp spaces on arbitrary
measurable sets Q c R", n?: 1. The underlying construction then starts with
a L p function ({J i' 0 with compact support, and the system is defined by all
those
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that do not vanish on a set of positive measure in Q. Along the same lines,
Theorem 2 may be generalized.

Remark 4. As was mentioned above, if we are restricted to the classical
situation 1~p < 00, the conditions rp E L p and (*) are necessary and suf­
ficient for {rpn} to form a representation system in L p . However, in the
first example given in the Introduction where (*) is violated it suffices to
add a single constant function to the system and one arrives at a
representation system (in this case, we have the Haar system which is
even a Schauder basis in L p ). One might ask whether there is a general
possibility to repair the systems where (*) does not hold by adding a
finite number of auxiliary functions. A simple example shows that this is
not the case: If rp has mean value zero on each dyadic interval of the
form [2 -k - 1,2 -k], k = 0, 1, ..., then any function from the corresponding
system {rpn} is L 2 orthogonal to the subsystem of all Haar functions with
index n = 2\ k = 0, I, ..., which span an infinite-dimensional subspace in Lp

(I ~p< 00). .

For p < I, the condition (*) seems to be no more important (compare
the result of Theorem l(b»). However, growth conditions may come in. As
we learned from G. Tachev, the crucial property (**) is not satisfied for the
functions rp(t) = t -fJ if 2/(p + 1) ~ f3 < lip, 0 <p < 1.

3. REPRESENTATION SYSTEMS IN Lp(Rn
)

The present section is motivated by the recent investigations on multi­
resolution analysis, shift-invariant subspaces, and wavelet constructions
on R". Throughout this section, let rp(t) E L p == Lp(R"), with n ~ I and
I ~ p < 00 be given, and define (as in Remark 3)

Denote by

the sequence of dyadic (with respect to h = 2 -k) principal shift-invariant
subspaces corresponding to rp (see [BDR J for some generalities and
history). Formally, {Vk(rp)} looks like a multiresolution analysis ([MI];
[0], Chapter 5; [1M]) but we will not assume that this sequence of closed
subspaces of L p is increasing which is a basic assumption in much of the
wavelet literature.
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The question we will discuss here is whether {qJ k,;} forms a representa­
tion system in Lp' If the answer is yes, as a by-product we get

L Vk(qJ) I =Lp '

k L p

If Vk(qJ) c Vk+ l(qJ) the sum may be replaced by the union of the sub­
spaces, The density in L p of the latter set which is one of the basic assump­
tions of a multiresolution analysis (p = 2) has been studied to a certain
generality in [D] (see Proposition 5.3,2 and the remarks on pp, 143-145),
[Md], [1M] (Theorem 2,5), elL] under various assumptions on qJ
(as a rule, these papers require Vk(qJ) c Vk+ I (qJ) but see [BDR]
(Theorem 1.7)),

In Section 2, Remark 3, we have already stated that in the case of a com­
pactly supported generating function qJ the result of Theorem 1 can be
carried over to the present situation, In addition, in this case the summa­
tion order of the constructed series representation does not matter, In the
following, we will call a series with respect to {qJ k,;} unconditionally
Lp-convergent if any (linear) ordering of the index set {(k, i)} leads to an
Lp-convergent series, with the same limit f E L p '

We will now state a sufficient condition for {qJ k,;} to form an uncondi­
tional representation system in L p (i,e" the representation we can find for
any f E L p will be unconditionally Lp-convergent to f) which also covers
some qJ with noncompact support but still requires certain additional decay
properties for p > I,

THEOREM 3, Let qJ E Lp for some I::;;;p < 00, for I <p < CfJ we addi­
tionally require

IqJ(t)/::;;; c, /tl- n
-)',

with some y > 0, Suppose

It I ---> 00

f qJ(t)dt=0(0)#0,
R"

Then {qJ k,;} is an unconditional representation system in Lp'

Proof The main idea is first to prove an analog of Lemma 2, Without
loss of generality, let 0(0) = 1. Thus, for any sufficiently large cube
W = (- 2', 2')" defined by a natural number r

~ < J == f qJ( t) dt < ~,
If'

The value of r will be fixed below,
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From now on we consider only the subsystem
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tpk,i(t) == tpk.2'+lj(t)

which depends on the choice of Wand, thus, on r. To each t/t k, i there
corresponds its cube W k i of sidelength 2'+ l-k (the shifted and dilated
W = Wo,o), and the colle~tion

OJ) - {W " zn}'7tk = k. i' IE

forms a partition of Rn into non-intersecting (open) cubes for arbitrary
kEZ.

Let Sk denote any step function with respect to !j£k, i,e,

Obviously, Sk E L p iff

II Skllf
p
=2(,+I-klll L IAk.Y<oo,

i E zn

The above mentioned analog of Lemma 2 we are going to prove reads as
follows:

LEMMA 3. In the above construction, one can fix r and find some reals
Ao # 0 and (J E (0, I) such that (independent(v of S k and k)

II!Sk-AO)~ Ak.it/tk,jll ~(J IISdLp '

IE zn L p

(5 )

Proof It suffices to consider k = 0, we therefore omit the index k for
brevity. Then

""A_----J"..----_
II S - A,~" A,~l, <> (~.t, IA,O - A~;(t))l' d0'/'

""B---_/'--...._---
+ A '('L I.I.I. }'jt/tj(t) IP d:)l/P

leZn u. J"# I

To the second term we apply the technique behind Theorem 2.1 from
[JM]:
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B= f L II Aj+mljlj(t)IP dt
W mEZ" j"'O

~ f I {( L \ljIj(t)I)P-I L IAj+mIP\ljIj(t)l} dt
W m E Z" j '" 0 j '" 0

'----v--'
=4>(t)

= f tb(ty-l L I IAj+mI P IljIj(t)! dt
W j "'0 mE Z"

= (~" lAY) f
w

<I>(ty dt = 2 -(r+ I)n /lSllfJW <I>(tV dt.

The first term of the above expression can be transformed into

A = (~" 1..1.;/P) f) 1- A<p(tW dt = 2 -(r+ I) n IISllfp Pp(..1.).

~
=Pp(A)

Pp(..1.) can be estimated along the lines of Lemma 1. Consider first the
simplest case p = 1. Here,

~2(r+l)n-Al5+2Af <p(t)dt
t: q:>(t) ~ 1/),

=2(r+l 1n(I_.u-(r+l)n(l5_2 f <P(t)dt)).
t: q:>(t);;. 1/),

On the other hand, for <p ELI we have

f <I>(t)dt= f 1<p(t)ldt--+O,
W R"\W

r --+ ro.

Fix a sufficiently large r such that this integral is less than 1/8. Then the
substitution into the above inequalities yields

II S-A L ..1. i r/J i ll
ieZ tl Lj

~(1-A2-(r+l)n.(J-2 f <P(t)dt-l/S)) II SIILj'
t: q:>(t)~ 1/),
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Now we can finish the argument. Choose 1 = 10 such that the integral in
the above formula is also bounded by 1/8 (it tends to zero if 1 ~ 0 + ). Since
0> 1/2 we get the desired result with (1 = I - 10 2 -(r+ I) n- 3.

For p > lone may use the inequalities

resp.

II-xIP~ I-px+c IxI P, xER, I <p<2,

X E R, 2 ~P < 00,

which can be checked by simple calculus. This gives in the same way

2 -(r+ Ilnpp(1) ~ 1- 2-(r+ l)n(pAO - d P IlcpllL
p

)

for I < p < 2, for p ~ 2 a further term d 2 II cp II L2 has to be added
correspondingly.

To estimate the integral involving <J) we make use of the decay property.
For sufficiently large r we obtain

f ,<J)(t)Pdt~C2(r+l)n'(L (2 r1 i
l
)-(n+)'))P ~C2-r((n+Ylp-n).

fI i .. O

Putting things together, we arrive at

for 1 ~ 0 and I < p < 2 (the case p ~ 2 is completely analogous). Since y > 0
we can take r sufficiently large such that the first derivative of this upper
bound at 1 = 0 + is negative. With this r fixed, we can now find the
desired Ao. This proves (5).

With this substitute for Lemma 2 at hand, we can finish the proof
of Theorem 3 along the lines of the recursive construction used for
Theorem 2. Note that the analog of (4) trivially follows from (5):

II
Ao .2: Ak , jl/J k. i II ~ (l + (1) II Ski! Lp '

IEK Lp

(6)

The dyadic step functions are chosen such that they fit the assumptions of
Lemma 3, the functions h r are now explicitly given by the expression in (5).
The unconditional convergence of the whole series easily follows from (6)
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and the geometric decay of Ilfr IIl.
p

resp. IISr IIl.
p

which comes from the con­
struction as given in the proof of Theorem 2. Note that there is no problem
with k ----. - OC, the first step function in the construction may correspond
to an arbitrarily large k = k o. This expresses the fact that the systems under
consideration do not form bases. The details are left to the reader.

Remark 5. For p = I, Theorem 3 is in final shape: The system {<p k. J is
a representation system in L1(R n

) if and only if rP(O) i= O.
The situation is different for p> 1. From Theorem 1.7 of [BDR] it

becomes clear (at least for p = 2) that some additional condition should be
required. Unfortunately, we were not able to give the proof of Theorem 3
for the more general class of

This class which is a subspace of L] !l L p , I <p < oc, was introduced in
[1M] for studying L p multiresolution analyses generated by refinable func­
tions <p with noncompact support. The condition rP(O) i= 0 which is clearly
necessary if p = I but not for p > I (look at the Haar wavelet system on R 1)
also needs further elaboration.
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