Representation in L_{p} by Series of Translates and Dilates of One Function

V. I. Filippov*
Department of Mathematical Analysis, University of Saratov, 410601 Saratov, Russia

AND

P. Oswald ${ }^{\dagger}$

Institute of Applied Mathematics, Friedrich-Schiller-University Jena, D-07740 Jena, Germany

Communicated by Ronald A. DeVore

Received April 28, 1993; accepted in revised form May 4, 1994

Abstract

We study minimal conditions under which the function system of dyadic translates and dilates of one fixed function $\varphi(t)$ with support in [0,1] forms a representation system in $L_{p}(0,1)$, i.e., that any function $f(t) \in L_{p}(0,1)$ can be represented by at least one L_{p}-convergent series with respect to this system. Generalizations to the situation of a multiresolution analysis on \mathbf{R}^{n} are also discussed. C 1995 Academic Press, Inc.

1. Introduction

Let be given a function $\varphi(t)$ with support in $[0,1]$, and consider the system

$$
\varphi_{k, i}(t)=\varphi\left(2^{k} t-i\right), \quad i=0, \ldots, 2^{k}-1 ; \quad k=0,1,2, \ldots
$$

We are going to study minimal conditions under which this system (or a subsystem of it) is a representation system in $L_{p}(0,1)$ for some $0<p<\infty$,

[^0]i.e., whether for any $f \in L_{p}(0,1)$ there exists at least one L_{p}-convergent series representation:
$$
f(t)=\sum_{k=0}^{\infty} \sum_{i=0}^{2^{k}-1} a_{k, i} \varphi_{k, i}(t) .
$$

The notion of representation systems, which generalizes the notion of a basis, was introduced by A. A. Talaljan [T1] but arised already in connection with the classical investigations by D. E. Menshov [Me] on the representation of arbitrary measurable functions by trigonometric series. There is a number of results, both on representation systems in spaces without bases (such as $L_{p}, 0<p<1$), and on cases where some classical system does not form a basis in a particular space. For instance, A. A. Talaljan [T1, T2] showed that any complete orthonormal system in $L_{2}(0,1)$ forms a representation system in $L_{p}(0,1), 0<p<1$. Moreover, this property remains true even if a finite number of functions are deleted from the orthonormal system. As a consequence, if we take

$$
\varphi(t)=\left\{\begin{array}{ll}
-1, & t \in\left(\frac{1}{2}, 1\right] \\
1, & t \in\left(0, \frac{1}{2}\right]
\end{array},\right.
$$

then $\left\{\varphi_{k, i}\right\}$ is a representation system in $L_{p}(0,1), 0<p<1$ (to this end, consider the Haar system and delete the first (constant) function). Clearly, for $p \geqslant 1$ this is not true, a constant $\neq 0$ can not be represented. Another result we want to mention is as follows (P. L. Uljanov [U]): The system $\left\{\varphi_{k, i}\right\}$ with the generating function

$$
\varphi(t)= \begin{cases}1-2 t, & \frac{1}{2}<t \leqslant 1 \\ 2 t, & 0 \leqslant t \leqslant \frac{1}{2}\end{cases}
$$

(which is actually the classical Faber-Schauder-System with the first two functions deleted) forms a representation system in $L_{p}(0,1), 0<p<\infty$. There are investigations on subsystems of representation systems [I, F1, F 2], on representation systems in $\phi(L)$ [U, I, O1, O2, F1, F2], on the representation of complex functions by series of exponentials [K] etc.

In Section 2 we prove the following result which generalizes the above examples in a rigorous way.

Theorem 1. (a) Let $\varphi \in L_{q}(0,1)$ for some $1 \leqslant q<\infty$. If

$$
\begin{equation*}
\int_{0}^{1} \varphi(t) d t \neq 0 \tag{*}
\end{equation*}
$$

then $\left\{\varphi_{k, i}\right\}$ is a representation system in $L_{p}(0,1)$ for any $0<p \leqslant q$.
(b) Let $0 \neq \varphi \in L_{2}(0,1)$. Then $\left\{\varphi_{k, i}\right\}$ is a representation system in $L_{p}(0,1), 0<p<1$.

Obviously, this result completely solves the question of $\left\{\varphi_{k, i}\right\}$ being a representation system in $L_{p}(0,1)$ for $1 \leqslant p<\infty: \varphi(t) \in L_{p}(0,1)$ and $(*)$ are necessary and sufficient conditions in this case. For $p<1$, a final answer is still missing.

The method we use is elementary. The crucial Lemma 1 of Section 2 shows the existence of a constant $\lambda_{0} \neq 0$ such that

$$
\begin{equation*}
\int_{0}^{1}\left|1-\lambda_{0} \varphi(t)\right|^{p} d t<1 \tag{**}
\end{equation*}
$$

From this simple fact, we can construct L_{p}-convergent series with respect to $\left\{\varphi_{k, i}\right\}$ for any $f \in L_{p}(0,1)$. The construction shows that the systems under consideration never form bases: one can find many representations for any given function as well as delete functions from $\left\{\varphi_{k . i}\right\}$ without destroying the representation property. We also give a necessary and sufficient condition on a subsystem of $\left\{\varphi_{k, i}\right\}$ to remain still a representation system in L_{p}.

The interest in systems of the above type which are generated by translation and dilation from one function $\varphi(t)$ stems also from the recent research activities on multiresolution analysis and wavelets where questions of approximation and representation by analogous systems on \mathbf{R}^{n} have been studied to a certain generality, of. [D, BDR, JM]. We address this case of representation systems $\left\{\varphi_{k, i}\right\}$ in $L_{p}\left(\mathbf{R}^{n}\right)$ in Section 3, allowing also some generating functions φ with noncompact support.

2. Representation Systems in $L_{p}[0,1]$

Let $\varphi(t):[0,1] \rightarrow \mathbf{R}$ be an arbitrary measurable function which is extended outside [0,1$]$ by zero. We define the system $\left\{\varphi_{k, i}\right\}$ of dyadic translates and dilates of φ on $[0,1]$ by

$$
\varphi_{k, i}(t)=\varphi\left(2^{k} t-i\right), \quad t \in[0,1] ; \quad k=0,1, \ldots ; \quad i=0, \ldots, 2^{k}-1
$$

Denote (as in the classical case of the Haar system)

$$
\varphi_{n}(t) \equiv \varphi_{k, i}(t), \quad n=2^{k}+i, \quad k=0,1, \ldots, \quad i=0, \ldots, 2^{k}-1 .
$$

Let $I_{n} \equiv I_{k, i}=\left(i / 2^{k}, i+1 / 2^{k}\right)$ stand for the dyadic interval related to φ_{n}.
Concerning the L_{p}-spaces $(0<p<\infty)$ we introduce the following notation:

$$
\|f\|_{L_{p}}=\left(\int_{0}^{1}|f(t)|^{p} d t\right)^{1 / \tilde{p}}, \quad \tilde{p}=\max (1, p)
$$

denotes the usual norm of a function $f \in L_{p} \equiv L_{p}(0,1)$ if $1 \leqslant p<\infty$, and generates the L_{p}-metric if $0<p<1$. Obviously, accepting this we can use the triangle inequality

$$
\|f+g\|_{L_{p}} \leqslant\|f\|_{L_{p}}+\|g\|_{L_{p}}, \quad f, g \in L_{p}
$$

for all $0<p<\infty$. The same notation carries over to L_{p}-spaces on general domains in \mathbf{R}^{n}.

Definition [T1, T2]. A system of $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L_{p}, 0<p<\infty$ is called a representation system in the space L_{p} if for any $f \in L_{p}$ there exists a series $\sum_{k=1}^{\infty} c_{k} f_{k}$ such that

$$
\lim _{n \rightarrow \infty}\left\|f-\sum_{k=1}^{n} c_{k} f_{k}\right\|_{L_{p}}=0
$$

This definition generalizes to F -spaces.
Theorem 2. (a) Let φ satisfy the assumptions of Theorem 1(a). Then a subsystem $\left\{\varphi_{n}\right\}$ of the system $\left\{\varphi_{n}\right\}$ is a representation system in L_{p}, $0<p \leqslant q$, if and only if

$$
\begin{equation*}
\forall N \in \mathbf{N} \quad \operatorname{mes}\left\{\bigcup_{l=N}^{\infty} I_{n \prime}\right\}=1 \tag{1}
\end{equation*}
$$

(b) If φ satisfies the assumptions of Theorem 1(b) then a subsystem $\left\{\varphi_{n_{t}}(t)\right\}$ is a representation system in $L_{p}, 0<p<1$, if and only if (1) is fulfilled.

We first prove the following lemma.
Lemma 1. Under the assumptions of Theorem 1(a) resp. (b) there exists a constant $\lambda_{0} \neq 0$ such that

$$
\begin{equation*}
\sigma_{0} \equiv\left\|1-\lambda_{0} \varphi\right\|_{L_{p}}<1 \tag{2}
\end{equation*}
$$

Proof. We start with case (a) of Theorem 1. Let $\varphi \in L_{q}, q \geqslant 1$, satisfy $\int_{0}^{1} \varphi(t) d t=\delta>0$ (if $\delta<0$ then consider $-\varphi(t)$).

Obviously, it is sufficient to prove the estimate for $p=q$ since by the Hölder inequality $\|g\|_{L_{p}} \leqslant\|g\|_{L_{q}}^{\min (p, 1)}$ for all $g \in L_{q}$ and $p<q$. For $p \geqslant 1$ we have the inequalities

$$
\begin{array}{ll}
|1-x|^{p} \leqslant 1-p x+c_{0} x^{2}, & |x| \leqslant \frac{1}{2}, \\
|1-x|^{p} \leqslant 1+c_{1}|x|+c_{2}|x|^{p}, & x \in \mathbf{R} .
\end{array}
$$

which hold with some positive constants c_{0}, c_{1}, c_{2}. Let

$$
E_{\alpha}=\left\{t:|\varphi(t)| \leqslant \frac{1}{2 \alpha}\right\}, \quad E_{\alpha}^{*}=\left\{t:|\varphi(t)|>\frac{1}{2 \alpha}\right\} . \quad \alpha>0
$$

We use the first inequality on E_{α}, the second one on E_{α}^{*}. For $0<\lambda \leqslant \alpha$ we obtain

$$
\begin{aligned}
\|1-\lambda \varphi\|_{L_{p}}^{p} & =\int_{E_{x}}|1-\lambda \varphi(t)|^{p} d t+\int_{E_{*}^{*}}|1-\lambda \varphi(t)|^{p} d t \\
& \leqslant \operatorname{mes} E_{x}-p \int_{E_{x}} \lambda \varphi(t) d t+c_{0} \lambda^{2} \int_{E_{x}} \varphi^{2}(t) d t \\
& +\operatorname{mes} E_{\alpha}^{*}+c_{1} \lambda \int_{E_{*}^{*}}|\varphi(t)| d t+c_{2} \lambda^{p} \int_{E_{\alpha}^{*}}|\varphi(t)|^{p} d t \\
& \leqslant 1-p \lambda \delta+c_{3} \lambda \int_{E_{\alpha}^{*}}|\varphi(t)| d t+c_{2} \lambda^{p} \int_{E_{E_{*}^{*}}}|\varphi(t)|^{p} d t+\frac{c_{0} \lambda^{2}}{4 \alpha^{2}} \equiv T(\lambda)
\end{aligned}
$$

Since mes $E_{\alpha}^{*} \rightarrow 0$ for $\alpha \rightarrow 0_{+}$and $\varphi \in L_{p}, p=q \geqslant 1$, one can now fix $x_{0}>0$ such that $T^{\prime}\left(0_{+}\right)<0$ which together with $T(0)=1$ implies the existence of $0<\lambda_{0}<1 / 2 \alpha_{0}$ with the desired properties. This proves the assertion in the case (a) of Theorem 1.

We come now to the assumptions (b) of Theorem 1. Let $0<p<1$. By the Taylor formula there exists a constant $c>0$ such that

$$
|1-x|^{p} \leqslant 1-p x-c x^{2}, \quad|x| \leqslant \frac{1}{2}
$$

Let

$$
G(\lambda)=\int_{0}^{1}|1-\lambda \varphi(t)|^{p} d t, \quad \lambda \in \mathbf{R}
$$

and

$$
E_{\lambda}=\left\{t:|\lambda \varphi(t)| \leqslant \frac{1}{2}\right\}=E_{-\lambda}, \quad E_{\lambda}^{*}=\left\{t:|\lambda \varphi(t)|>\frac{1}{2}\right\}=E_{-\lambda}^{*} .
$$

Then, using the above inequality on E_{λ} and the triangle inequality on E_{λ}^{*}, we obtain

$$
G(\lambda)=\int_{E_{\lambda}}+\int_{E_{\lambda}^{*}} \leqslant 1-\lambda p \int_{E_{\lambda}} \varphi(t) d t-c \int_{E_{\lambda}}|\lambda \varphi(t)|^{2} d t+\int_{E_{\lambda}^{*}}|\lambda \varphi(t)|^{p} d t
$$

For $t \in E_{\lambda}^{*}$ we have $|\lambda \varphi(t)|^{p} \leqslant 2^{2-p}|\lambda \varphi(t)|^{2}$. Thus, we get

$$
\frac{G(\lambda)+G(-\lambda)}{2} \leqslant 1-\lambda^{2}\left[c \int_{E_{\lambda}}|\varphi(t)|^{2} d t-2^{2-p} \int_{E_{i}}|\varphi(t)|^{2} d t\right]
$$

It can easily be seen that for $\lambda \rightarrow 0$

$$
\int_{E_{K_{K}}}|\varphi(t)|^{2} d t \rightarrow\|\varphi\|_{L_{2}}^{2}>0
$$

and that

$$
\int_{E_{i^{*}}}|\varphi(t)|^{2} d t \rightarrow 0
$$

Hence there exists a $\lambda_{0}>0$ such that $\left(G\left(\lambda_{0}\right)+G\left(-\lambda_{0}\right)\right) / 2<1$ which gives the result for case (b).

The following discussion shows that the inequality (2) is all what we need to prove the assertions of Theorems 1 and 2. For brevity, denote $g_{l}(x)=\lambda_{0} \varphi_{n_{i}}(x)$ where λ_{0} is taken from Lemma 1 , and $\left\{\varphi_{n_{l}}\right\}_{l=1}^{\infty}$ is any subsystem of the system $\left\{\varphi_{n}\right\}$. A function S will be called dyadic step function if, for some $k \in \mathbf{N}, S$ is constant on all intervals $I_{k, i}$, i.e., if

$$
S(t)=\sum_{i=0}^{2^{k}-1} \hat{\lambda}_{k, i} \chi_{I_{k, i}}(t)
$$

where $\chi_{I}(t)$ denotes the characteristic function of an interval I, and the $\lambda_{k, i}$ are any real numbers.

Lemma 2. Assume that $\varphi \in L_{p}(0,1)$ satisfies (2), and that the subsystem $\left\{\varphi_{n_{i}}\right\}$ satisfies (1). Fix some $\sigma \in\left(\sigma_{0}, 1\right)$. Then for any step function \dot{S}, and arbitrary $N \in \mathbf{N}$ there exists a finite sum $h \equiv \sum_{l=N}^{M} c_{1} g_{l}, M>N$, such that

$$
\begin{gather*}
\|S-h\|_{L_{p}} \leqslant \sigma\|S\|_{L_{p}} \tag{3}\\
\left\|\sum_{l=N}^{n} c_{l} g_{l}\right\|_{L_{p}}<(1+\sigma)\|S\|_{L_{p}}, \quad N \leqslant n \leqslant M \tag{4}
\end{gather*}
$$

Proof. Consider a dyadic step function $S \not \equiv 0$ as given above (with a integer k fixed). According to (1) and the obvious properties of dyadic intervals, we can find a subsequence of indices $\max \left(N, 2^{k}\right) \leqslant l_{1}<$ $l_{2}<\cdots<l_{j}<\cdots$ such that the intervals $E_{j} \equiv I_{n_{j}}$ are pairwise disjoint, and that still mes $\bigcup_{j} E_{j}=1$. By construction, each E_{j} belongs to exactly one $I_{k, i}$, and we set $\lambda_{j}=\lambda_{k, i}$.

We can now check that

$$
h=\sum_{j=1}^{m} \lambda_{j} g_{l_{j}}
$$

has the desired properties for sufficiently large m (to fit the notation used in the above formulation of Lemma 2, set $c_{l}=\lambda_{j}$ if $l=l_{j}$, and $c_{l}=0$ otherwise). Let $\tilde{E}_{m}=[0,1] \backslash \bigcup_{j=1}^{m} E_{j}$. Obviously, by this construction and by (2), we get

$$
\begin{aligned}
\|S-h\|_{L_{p}}^{\tilde{p}} & =\int_{\tilde{E}_{m}}|S(t)|^{p} d t+\int_{0}^{1}\left|1-\lambda_{0} \varphi(t)\right|^{p} d t \sum_{j=1}^{m}\left|\lambda_{j}\right|^{p} \operatorname{mes} E_{j} \\
& \leqslant \int_{E_{m}}|S(t)|^{p} d t+\sigma_{0}^{\tilde{p}}\|S\|_{L_{p}}^{\tilde{p}}
\end{aligned}
$$

where λ_{0} and σ_{0} are given in Lemma 1. Since mes $\tilde{E}_{m} \rightarrow 0$ for $m \rightarrow \infty$, the remaining integral over \widetilde{E}_{m} will be arbitrarily small. This establishes (3) if we fix some sufficiently large $m(=M)$. Since the intervals E_{j} are disjoint and supp $g_{i j} \subset E_{j}$, we have

$$
\left\|\sum_{j=1}^{n} \lambda_{j} g_{i^{\prime}}\right\|_{L_{p}} \leqslant\|h\|_{L_{p}} \leqslant\|h-S\|_{L_{p}}+\|S\|_{L_{p}} \leqslant(1+\sigma)\|S\|_{L_{p}}
$$

for all $n \leqslant m$ which finishes the proof of Lemma 2.
Proof of Theorem 2. We use an induction argument. Let $f_{0}=f$, $N_{0}=M_{0}=0$. In the induction step, for given f_{r-1} and M_{r-1}, we first define some dyadic step function S_{r} such that

$$
\left\|f_{r-1}-S_{r}\right\|_{L_{f}} \leqslant 2^{-r-1}
$$

After this, by Lemma 2 applied to this S_{r} and some $N_{r}>M_{r-1}$ we find a linear combination

$$
h_{r}=\sum_{l=N_{r}}^{M_{r}} c_{l} g_{l}
$$

such that

$$
\begin{aligned}
\left\|S_{r}-h_{r}\right\|_{L_{p}} \leqslant \sigma\left\|S_{r}\right\|_{L_{p}}, \\
\left\|\sum_{l=N}^{n} c_{l} g_{l}\right\|_{\| L_{p}} \leqslant(1+\sigma)\left\|S_{r}\right\|_{L_{p}}, \quad n=N_{r}, \ldots, M_{r} .
\end{aligned}
$$

for some fixed $\sigma_{0}<\sigma<1$. Finally, to finish the induction step, we set $f_{r}=f_{r-1}-h_{r}$.

To prove the theorem, we will check that the series

$$
\sum_{r=1}^{\infty} h_{r} \equiv \sum_{l=1}^{\infty} c_{l} g_{l} \equiv \sum_{l=1}^{\infty} \lambda_{0} c_{l} \varphi_{m_{i}}
$$

represents f in L_{p} (we put $c_{l}=0$ for the remaining indices l). To this end, for arbitrarily given $n>0$, define the index $r \geqslant 1$ such that $M_{r_{-1}} \leqslant n<M_{r}$. Then, by the above construction,

$$
\begin{aligned}
\left\|f-\sum_{l=1}^{n} c_{l} g_{l}\right\|_{L_{p}} & \leqslant\left\|f_{r-1}\right\|_{L_{p}}+\left\|\sum_{l=N_{r}}^{n} c_{l} g_{l}\right\|_{L_{p}} \\
& \leqslant\left\|f_{r-1}\right\|_{L_{p}}+(1+\sigma)\left\|S_{r}\right\|_{L_{p}} \\
& \leqslant(2+\sigma)\left\|f_{r-1}\right\|_{L_{p}}+(1+\sigma)\left\|f_{r-1}-S_{r}\right\|_{L_{p}} \\
& \leqslant 2^{-r}+3\left\|f_{r-1}\right\|_{L_{p}} .
\end{aligned}
$$

Note that for $n<N_{r}$ the second term may be neglected. Since

$$
\begin{aligned}
\left\|f_{r}\right\|_{L_{p}} & \leqslant\left\|f_{r-1}-S_{r}\right\|_{L_{r}}+\left\|S_{r}-h_{r}\right\|_{L_{p}} \\
& \leqslant 2^{-r-1}+\sigma\left\|S_{r}\right\|_{L_{p}} \leqslant 2^{-r}+\sigma\left\|f_{r-1}\right\|_{L_{p}}
\end{aligned}
$$

we get recursively

$$
\begin{aligned}
\left\|f_{r}\right\|_{L_{p}} & \leqslant 2^{-r}+2^{-r+1} \sigma+\cdots+2^{-1} \sigma^{r-1}+\sigma^{r}\|f\|_{L_{p}} \\
& \leqslant r\left(\max \left(2^{-1}, \sigma\right)^{r}+\sigma^{r}\|f\|_{L_{p}},\right.
\end{aligned}
$$

which finally shows the convergence of the series to f. The proof of the sufficiency of (1) for the assertion of Theorem 2 is now complete.

The necessity is obvious: if (1) is violated then there exists a set $E \subset[0,1]$ of positive measure such that all φ_{m} but a finite number vanish on E. Therefore, it is easy to construct a function $f \in L_{p}[0,1]$ with support in E which is not in the L_{p} closure of the given subsystem.

Remark 1. Since the whole system $\left\{\varphi_{n}\right\}$ obviously satisfies (1), Theorem 1 is a consequence of Theorem 2.

Remark 2. It can be shown that condition (1) of Theorem 2 can be replaced by a condition formulated directly in terms of the functions $\varphi_{n t}$:

$$
\forall \varepsilon>0 \quad \forall N \in \mathbf{N} \quad \exists m>N: \text { mes }\left\{t: \sum_{l=N}^{m}\left|\varphi_{m_{i}}(t)\right| \neq 0\right\}>1-\varepsilon
$$

Remark 3. One easily observes from the proofs that Theorem 1 carries over to the spaces $L_{p}\left([0,1]^{n}\right), p>0$, or even to L_{p} spaces on arbitrary measurable sets $\Omega \subset \mathbf{R}^{n}, n \geqslant 1$. The underlying construction then starts with a L_{p} function $\varphi \neq 0$ with compact support, and the system is defined by all those

$$
\varphi_{k, \mathbf{i}}(\mathbf{x})=\varphi\left(2^{k} \mathbf{x}-\mathbf{i}\right), \quad \mathbf{x} \in \mathbf{R}^{n}, \quad \mathbf{i} \in \mathbf{Z}^{n}, \quad k \in \mathbf{Z}
$$

that do not vanish on a set of positive measure in Ω. Along the same lines, Theorem 2 may be generalized.

Remark 4. As was mentioned above, if we are restricted to the classical situation $1 \leqslant p<\infty$, the conditions $\varphi \in L_{p}$ and (*) are necessary and sufficient for $\left\{\varphi_{n}\right\}$ to form a representation system in L_{p}. However, in the first example given in the Introduction where (*) is violated it suffices to add a single constant function to the system and one arrives at a representation system (in this case, we have the Haar system which is even a Schauder basis in L_{p}). One might ask whether there is a general possibility to repair the systems where (*) does not hold by adding a finite number of auxiliary functions. A simple example shows that this is not the case: If φ has mean value zero on each dyadic interval of the form $\left[2^{-k-1}, 2^{-k}\right], k=0,1, \ldots$, then any function from the corresponding system $\left\{\varphi_{n}\right\}$ is L_{2} orthogonal to the subsystem of all Haar functions with index $n=2^{k}, k=0,1, \ldots$, which span an infinite-dimensional subspace in L_{p} ($1 \leqslant p<\infty$).

For $p<1$, the condition (*) seems to be no more important (compare the result of Theorem $1(b)$). However, growth conditions may come in. As we learned from G. Tachev, the crucial property (**) is not satisfied for the functions $\varphi(t)=t^{-\beta}$ if $2 /(p+1) \leqslant \beta<1 / p, 0<p<1$.

3. Representation Systems in $L_{p}\left(R^{n}\right)$

The present section is motivated by the recent investigations on multiresolution analysis, shift-invariant subspaces, and wavelet constructions on \mathbf{R}^{n}. Throughout this section, let $\varphi(\mathbf{t}) \in L_{p} \equiv L_{p}\left(\mathbf{R}^{n}\right)$, with $n \geqslant 1$ and $1 \leqslant p<\infty$ be given, and define (as in Remark 3)

$$
\varphi_{k, \mathbf{i}}(\mathbf{t})=\varphi\left(2^{k} \mathbf{t}-\mathbf{i}\right), \quad t \in \mathbf{R}^{n}, \quad \mathbf{i} \in \mathbf{Z}^{n}, \quad k \in \mathbf{Z}
$$

Denote by

$$
V_{k}(\varphi)=\left.\overline{\operatorname{span}\left\{\varphi_{k, \mathbf{i}}: \mathbf{i} \in \mathbf{Z}^{n}\right\}}\right|_{L_{p}}, \quad k \in \mathbf{Z}
$$

the sequence of dyadic (with respect to $h=2^{-k}$) principal shift-invariant subspaces corresponding to φ (see [BDR] for some generalities and history). Formally, $\left\{V_{k}(\varphi)\right\}$ looks like a multiresolution analysis ([M1]; [D], Chapter 5 ; [JM]) but we will not assume that this sequence of closed subspaces of L_{p} is increasing which is a basic assumption in much of the wavelet literature.

The question we will discuss here is whether $\left\{\varphi_{k, i}\right\}$ forms a representation system in L_{p}. If the answer is yes, as a by-product we get

$$
\left.\overline{\sum_{k} \overline{V_{k}(\varphi)}}\right|_{L_{p}}=L_{p}
$$

If $V_{k}(\varphi) \subset V_{k+1}(\varphi)$ the sum may be replaced by the union of the subspaces. The density in L_{p} of the latter set which is one of the basic assumptions of a multiresolution analysis $(p=2)$ has been studied to a certain generality in [D] (see Proposition 5.3.2 and the remarks on pp. 143-145), [Md], [JM] (Theorem 2.5), [JL] under various assumptions on φ (as a rule, these papers require $V_{k}(\varphi) \subset V_{k+1}(\varphi)$ but see [BDR] (Theorem 1.7)).

In Section 2, Remark 3, we have already stated that in the case of a compactly supported generating function φ the result of Theorem 1 can be carried over to the present situation. In addition, in this case the summation order of the constructed series representation does not matter. In the following, we will call a series with respect to $\left\{\varphi_{k, i}\right\}$ unconditionally L_{p}-convergent if any (linear) ordering of the index set $\{(k, i)\}$ leads to an L_{p}-convergent series, with the same limit $f \in L_{p}$.

We will now state a sufficient condition for $\left\{\varphi_{k, i}\right\}$ to form an unconditional representation system in L_{p} (i.e., the representation we can find for any $f \in L_{p}$ will be unconditionally L_{p}-convergent to f) which also covers some φ with noncompact support but still requires certain additional decay properties for $p>1$.

Theorem 3. Let $\varphi \in L_{p}$ for some $1 \leqslant p<\infty$, for $1<p<\infty$ we additionally require

$$
|\varphi(\mathbf{t})| \leqslant C \cdot|\mathbf{t}|^{-n-\gamma}, \quad|\mathbf{t}| \rightarrow \infty
$$

with some $\gamma>0$. Suppose

$$
\int_{\mathbf{R}^{n}} \varphi(\mathbf{t}) d \mathbf{t}=\hat{\varphi}(0) \neq 0 .
$$

Then $\left\{\varphi_{k, i}\right\}$ is an unconditional representation system in L_{p}.
Proof. The main idea is first to prove an analog of Lemma 2. Without loss of generality, let $\hat{\varphi}(0)=1$. Thus, for any sufficiently large cube $W=\left(-2^{r}, 2^{r}\right)^{n}$ defined by a natural number r

$$
\frac{1}{2}<\delta \equiv \int_{W} \varphi(\mathbf{t}) d \mathbf{t}<\frac{3}{2} .
$$

The value of r will be fixed below.

From now on we consider only the subsystem

$$
\varphi_{k, \mathbf{i}}(\mathbf{t}) \equiv \varphi_{k, 2^{r+1} \mathbf{i}_{\mathbf{i}}}(\mathbf{t})
$$

which depends on the choice of W and, thus, on r. To each $\psi_{k, i}$ there corresponds its cube $W_{k, i}$ of sidelength 2^{r+1-k} (the shifted and dilated $W=W_{0,0}$), and the collection

$$
\mathscr{R}_{k} \equiv\left\{W_{k, i}: \mathbf{i} \in \mathbf{Z}^{n}\right\}
$$

forms a partition of $\mathbf{R}^{\prime \prime}$ into non-intersecting (open) cubes for arbitrary $k \in \mathbf{Z}$.

Let S_{k} denote any step function with respect to \mathscr{R}_{k}, i.e.

$$
S_{k}(\mathbf{t})=\lambda_{k, \mathbf{i}}, \quad \mathbf{t} \in W_{k, \mathbf{i}}, \quad \mathbf{i} \in \mathbf{Z}^{n}
$$

Obviously, $S_{k} \in L_{p}$ iff

$$
\left\|S_{k}\right\|_{L_{p}}^{p}=2^{(r+1-k) n} \sum_{\mathbf{i} \in \mathbf{Z}^{n}}\left|\lambda_{k, \mathbf{i}}\right|^{p}<\infty
$$

The above mentioned analog of Lemma 2 we are going to prove reads as follows:

Lemma 3. In the above construction, one can fix r and find some reals $\lambda_{0} \neq 0$ and $\sigma \in(0,1)$ such that (independently of S_{k} and k)

$$
\begin{equation*}
\left\|S_{k}-\lambda_{0} \sum_{\mathbf{i} \in \mathbf{Z}^{n}} \lambda_{k, \mathbf{i}} \psi_{k, \mathbf{i}}\right\|_{L_{p}} \leqslant \sigma\left\|S_{k}\right\|_{L_{p}} \tag{5}
\end{equation*}
$$

Proof. It suffices to consider $k=0$, we therefore omit the index k for brevity. Then

$$
\begin{aligned}
\left\|S-\lambda \sum_{\mathbf{i} \in \mathbf{Z}^{n}} \lambda_{\mathbf{i}} \psi_{\mathbf{i}}\right\|_{L_{p}} \leqslant & \overbrace{\left(\sum_{\mathbf{i} \in \mathbf{Z}^{n}} \int_{W_{i}}\left|\lambda_{\mathbf{i}}\left(1-\lambda \psi_{\mathbf{i}}(\mathbf{t})\right)\right|^{p} d \mathbf{t}\right)^{1 / p}}^{\equiv A} \\
& +\lambda \overbrace{\left(\sum_{\mathbf{i} \in \mathbf{Z}^{n}} \int_{W_{\mathbf{i}}}\left|\sum_{\mathbf{j} \neq \mathbf{i}} \lambda_{\mathbf{j}} \psi_{\mathbf{j}}(\mathbf{t})\right|^{p} d \mathbf{t}\right)^{1 / p}}^{\equiv B}
\end{aligned}
$$

To the second term we apply the technique behind Theorem 2.1 from [JM]:

$$
\begin{aligned}
B & =\int_{W} \sum_{\mathbf{m} \in \mathbf{Z}^{n}}\left|\sum_{\mathbf{j} \neq \mathbf{0}} \lambda_{\mathbf{j}+\mathbf{m}} \psi_{\mathbf{j}}(\mathbf{t})\right|^{p} d \mathbf{t} \\
& \leqslant \int_{W} \sum_{\mathbf{m} \in \mathbf{Z}^{n}}\{\underbrace{\left(\sum_{\mathbf{j} \neq \mathbf{0}}\left|\psi_{\mathbf{j}}(\mathbf{t})\right|\right.}_{\equiv \Phi(\mathbf{t})})^{p-1} \sum_{\mathbf{i} \neq \mathbf{0}}\left|\lambda_{\mathbf{j}+\mathbf{m}}\right|^{p}\left|\psi_{\mathbf{j}}(\mathbf{t})\right|\} d \mathbf{t} \\
& =\int_{W}^{\boldsymbol{\Phi}(\mathbf{t})^{p-1}} \sum_{\mathbf{j} \neq \mathbf{0}} \sum_{\mathbf{m} \in \mathbf{Z}^{n}}\left|\lambda_{\mathbf{j}+\mathbf{m}}\right|^{p}\left|\psi_{\mathbf{j}}(\mathbf{t})\right| d \mathbf{t} \\
& =\left(\sum_{\mathbf{i} \in \mathbf{Z}^{n}}\left|\lambda_{\mathbf{i}}\right|^{p}\right) \int_{W} \boldsymbol{\Phi}(\mathbf{t})^{p} d \mathbf{t}=2^{-(r+1) n}\|\boldsymbol{S}\|_{L_{p}}^{p} \int_{W} \boldsymbol{\Phi}(\mathbf{t})^{p} d \mathbf{t}
\end{aligned}
$$

The first term of the above expression can be transformed into
$A=\left(\sum_{\mathbf{i} \in \mathbf{Z}^{n}}\left|\lambda_{\mathbf{i}}\right|^{p}\right) \underbrace{\int_{W}|1-\lambda \varphi(\mathbf{t})|^{p} d \mathbf{t}}_{\equiv \beta_{p}(\lambda)}=2^{-(r+1) n}\|S\|_{L_{p}}^{p} \beta_{p}(\lambda)$.
$\beta_{p}(\lambda)$ can be estimated along the lines of Lemma 1. Consider first the simplest case $p=1$. Here,

$$
\begin{aligned}
\beta_{1}(\lambda) & =\int_{W}(1-\lambda \varphi(\mathbf{t})+2 \max \{0, \lambda \varphi(\mathbf{t})-1\}) d \mathbf{t} \\
& \leqslant 2^{(r+1) n}-\lambda \delta+2 \lambda \int_{\mathbf{t}: \varphi(\mathbf{t}) \geqslant 1 / \lambda} \varphi(\mathbf{t}) d \mathbf{t} \\
& =2^{(r+1) n}\left(1-\lambda 2^{-(r+1) n}\left(\delta-2 \int_{\mathbf{t}: \varphi(\mathbf{t}) \geqslant 1 / \lambda} \varphi(\mathbf{t}) d \mathbf{t}\right)\right) .
\end{aligned}
$$

On the other hand, for $\varphi \in L_{1}$ we have

$$
\int_{W} \boldsymbol{\Phi}(\mathbf{t}) d \mathbf{t}=\int_{\mathbf{R}^{n} \backslash \boldsymbol{W}}|\varphi(\mathbf{t})| d \mathbf{t} \rightarrow 0, \quad r \rightarrow \infty .
$$

Fix a sufficiently large r such that this integral is less than $1 / 8$. Then the substitution into the above inequalities yields

$$
\begin{aligned}
\| S & \lambda \sum_{i \in \mathbb{Z}^{n}} \lambda_{\mathbf{i}} \psi_{i} \|_{L_{1}} \\
& \leqslant\left(1-\lambda 2^{-(r+1) n} \cdot\left(\delta-2 \int_{\mathbf{t}: \varphi(t) \geqslant t / \lambda} \varphi(\mathbf{t}) d \mathbf{t}-1 / 8\right)\right)\|S\|_{L_{1}} .
\end{aligned}
$$

Now we can finish the argument. Choose $\lambda=\lambda_{0}$ such that the integral in the above formula is also bounded by $1 / 8$ (it tends to zero if $\lambda \rightarrow 0_{+}$). Since $\delta>1 / 2$ we get the desired result with $\sigma=1-\lambda_{0} 2^{-(r+1) n-3}$.

For $p>1$ one may use the inequalities

$$
|1-x|^{p} \leqslant 1-p x+c|x|^{p}, \quad x \in \mathbf{R}, \quad 1<p<2
$$

resp.

$$
|1-x|^{p} \leqslant 1-p x+c\left(x^{2}+|x|^{p}\right), \quad x \in \mathbf{R}, \quad 2 \leqslant p<\infty
$$

which can be checked by simple calculus. This gives in the same way

$$
2^{-(r+1) n} \beta_{p}(\lambda) \leqslant 1-2^{-(r+1) n}\left(p \lambda \delta-c \lambda^{p}\|\varphi\|_{L_{p}}\right)
$$

for $1<p<2$, for $p \geqslant 2$ a further term $c \lambda^{2}\|\varphi\|_{L_{2}}$ has to be added correspondingly.

To estimate the integral involving $\boldsymbol{\Phi}$ we make use of the decay property. For sufficiently large r we obtain

$$
\int_{W} \boldsymbol{\Phi}(\mathbf{t})^{p} d \mathbf{t} \leqslant C 2^{(r+1) n} \cdot\left(\sum_{\mathbf{i} \neq \mathbf{0}}\left(2^{r}|\mathbf{i}|\right)^{-(n+\gamma)}\right)^{p} \leqslant C 2^{-r((n+\gamma) p-n)}
$$

Putting things together, we arrive at

$$
\begin{aligned}
\| S- & \lambda \sum_{i \in \mathbf{Z}^{n}} \lambda_{i} \psi_{\mathbf{i}} \|_{L_{p}} \\
& \leqslant\|S\|_{L_{p}}\left(\left(1-2^{-(r+1) n}\left(p \lambda \delta-c \lambda^{p}\|\varphi\|_{L_{p}}\right)\right)^{1 / p}+C 2^{-r(n+\gamma)} \lambda\right)
\end{aligned}
$$

for $\lambda \geqslant 0$ and $1<p<2$ (the case $p \geqslant 2$ is completely analogous). Since $\gamma>0$ we can take r sufficiently large such that the first derivative of this upper bound at $\lambda=0_{+}$is negative. With this r fixed, we can now find the desired λ_{0}. This proves (5).

With this substitute for Lemma 2 at hand, we can finish the proof of Theorem 3 along the lines of the recursive construction used for Theorem 2. Note that the analog of (4) trivially follows from (5):

$$
\begin{equation*}
\left\|\lambda_{0} \sum_{\mathbf{i} \in K} \lambda_{k, \mathbf{i}} \psi_{k, \mathbf{i}}\right\|_{L_{p}} \leqslant(1+\sigma)\left\|S_{k}\right\|_{L_{p}}, \quad \forall k \subset \mathbf{Z}^{n} \tag{6}
\end{equation*}
$$

The dyadic step functions are chosen such that they fit the assumptions of Lemma 3, the functions h_{r} are now explicitly given by the expression in (5). The unconditional convergence of the whole series easily follows from (6)
and the geometric decay of $\left\|f_{r}\right\|_{L_{p}}$ resp. $\left\|S_{r}\right\|_{L_{p}}$ which comes from the construction as given in the proof of Theorem 2. Note that there is no problem with $k \rightarrow-\infty$, the first step function in the construction may correspond to an arbitrarily large $k=k_{0}$. This expresses the fact that the systems under consideration do not form bases. The details are left to the reader.

Remark 5. For $p=1$, Theorem 3 is in final shape: The system $\left\{\varphi_{k, i}\right\}$ is a representation system in $L_{1}\left(\mathbf{R}^{n}\right)$ if and only if $\hat{\varphi}(\mathbf{0}) \neq 0$.

The situation is different for $p>1$. From Theorem 1.7 of [BDR] it becomes clear (at least for $p=2$) that some additional condition should be required. Unfortunately, we were not able to give the proof of Theorem 3 for the more general class of

$$
\varphi \in \mathscr{L}_{p}\left(\mathbf{R}^{n}\right)=\left\{\psi: \sum_{\mathbf{i} \in \boldsymbol{Z}^{n}}|\psi(\mathbf{t}-\mathbf{i})| \in L_{p}\left([0,1]^{n}\right)\right\}
$$

This class which is a subspace of $L_{1} \cap L_{p}, 1<p<\infty$, was introduced in [JM] for studying L_{p}, multiresolution analyses generated by refinable functions φ with noncompact support. The condition $\hat{\varphi}(\mathbf{0}) \neq 0$ which is clearly necessary if $p=1$ but not for $p>1$ (look at the Haar wavelet system on \mathbf{R}^{1}) also needs further elaboration.

Acknowledgment

We thank G. Tachev, K. Zhao, and the referee for their suggestions which helped to improve the paper.

References

[BDR] C. De Boor, R. A. DeVore, and A. Ron, Approximation from shift-invariant subspaces of $L_{2}\left(\mathbf{R}^{d}\right)$, Trans. Amer. Math. Soc. 341 (1994), 787-780.
[D] I. Daubechies, "Ten Lectures on Wavelets," SIAM, Philadelphia, 1992.
[F1] V. I. Filippov, On subsystems of Faber-Schauder systems in function spaces, Izv. Vuzov Mat. 1 (1991), 78-85. [in Russian]
[F2] V. I. Filippov, On subsystems of the Haar system in the space E_{ϕ} with $\lim _{t \rightarrow \infty}(\phi(t) / t)=0$, Math. Zametki 51 (1992), 97-106. [in Russian]
[I] V. I. Ivanov, Representation of measurable functions by multiple trigonometric series, Trudy Mat. Inst. Steklov 164 (1983), 100-123. [in Russian]
[JL] R. Q. Jia and J. J. Lei, Approximation by multiinteger translates of functions having global support, J. Approx. Theory 72 (1993), 2-23.
[JM] R. Q. Jia and C. Micchelli, Using the refinement equation for the construction of pre-wavelets. II. Powers of two, in "Curves and Surfaces" (P. J. Laurent, A. LeMehaute, and L. L. Schumaker, Eds.), pp. 209-246, Academic Press, New York, 1991.
[K] Ju. F. Korobejnik, Representation systems, Uspekhi Mat. Nauk 36 (1981), 73-126.
[M1] S. Mallat, Multiresolution analysis and wavelets, Trans. Amer. Math. Soc. 315 (1989), 69-88.
[Md] W. Madych, Some elementary properties of multiresolution analyses of $L^{2}\left(\mathbf{R}^{n}\right)$, in "Wavelets-A Tutorial in Theory and Applications" (C. K. Chui, Ed.), pp. 259-294. Academic Press, Boston, 1992.
[Me] D. E. Menshov, Sur la représentation des fonction measurables par des séries trigonométriques, Mat. Sb. 9. No. 51 (1941), 667-692.
[OI] P. Oswald, On some convergence properties of Haar-Fourier series in the classes $\phi(L)$, Acta Math. Hungar. 42, Nos. 3/4 (1983), 279-293.
[O2] P. Oswald, Fourier series and conjugate function in the classes $\phi(L)$, Anal. Math. 2 (1982), 287-303.
[T1] A. A. Talaljan, On systems with respect to which series represent arbitrary measurable functions, Mat. Sb. 76, No. 1 (1968), 39-51. [in Russian]
[T2] A. A. Talaljan. Representation of functions of the space $L_{p}[0,1], 0<p<1$, by orthogonal series, Acta Math. Acad. Sci. Hungar. 21, Nos. 1/2 (1970), 1-9.
[U] P. L. Uljanov, Representation of functions by series and the classes $\phi(L)$, Uspekhi Mat. Nauk 27, No, 2 (1972), 3-52. [in Russian]

[^0]: * The first author acknowledges the support of DAAD during his stay at FSU Jena. E-mail address: Filippov@scnit.saratov.su.
 ${ }^{\dagger}$ E-mail address: Peter.Oswald (amath.tamu.edu.

